Finite difference magnetoelastic simulator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

Finite Difference Methods

In this notes, we summarize numerical methods for solving Stokes equations on rectangular grid, and solve it by multigrid vcycle method with distributive Gauss-Seidel relaxation as smoothing. The numerical methods we concerned are MAC scheme, nonconforming rotate bilinear FEM and nonconforming rotate bilinear FVM. 1. PROBLEM STATEMENT We consider Stokes equation (1.1) 8 >< >: μ ~ u +rp =~ f in ...

متن کامل

Finite Difference Methods

1 STATEMENT OF THE PROBLEM Our goal is to introduce how derivatives can be approximated by using difference quotients. Suppose we have an interval [a,b] ⊂ R. Let a = x0 < x1 < ·· · < xN−1 < xN = b be a partition. We call {x1, . . . , xN−1} the interior points, and {x0, xN } the boundary. Given a function f : [a,b] → R, we want to approximate the derivative f ′ using our partition. 2 DIFFERENCE ...

متن کامل

Multiplicative Finite Difference Methods

Based on multiplicative calculus, the finite difference schemes for the numerical solution of multiplicative differential equations and Volterra differential equations are presented. Sample problems were solved using these new approaches.

متن کامل

Mimetic finite difference method

Article history: Received 22 August 2012 Received in revised form 14 May 2013 Accepted 22 July 2013 Available online xxxx

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Research Europe

سال: 2021

ISSN: 2732-5121

DOI: 10.12688/openreseurope.13302.1